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SUMMARY

The Peters–Belson (PB) method uses regression to assess wage discrimination and can also be used to
analyse disparities for a variety of health care issues, e.g. cancer screening. The PB method estimates the
proportion of an overall disparity that is not explained by the covariates in the regression, e.g. education,
which may be due to discrimination. This method �rst �ts a regression model with individual-level
covariates to the majority=advantaged group and then uses the �tted model to estimate the expected
values for minority-group members had they been members of the majority group. The data on disparities
in health care available to biomedical researchers di�er from data used in legal cases as it is often
obtained from large-scale studies or surveys with complex sample designs involving strati�ed multi-
stage cluster sampling. Sample surveys with a large representative sample of various racial=ethnic groups
and the extensive collection of important social–demographic variables provide excellent sources of data
for assessing disparity for a wide range of health behaviours. We extend the PB method for multiple
logistic and linear regressions of simple random samples to weighted data from complex designed
survey samples. Because of the weighting and complex sample designs, we show how to apply the
Taylor linearization method and delete-one-group jackknife methods to obtain estimates of standard
errors for the estimated disparity. Data from the 1998 National Health Interview Survey on racial
di�erences in cancer screening among women is used to illustrate the PB method. Published in 2005
by John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Peters–Belson (PB) approach (called the Blinder–Oaxaca approach in the economics
literature) has been used in wage discrimination studies [1–3] and race (sex) discrimination
cases [4, 5] to predict the wage a minority (female) individual would have had if they were a
white (male) with the same quali�cations (see Reference [6] for a review of methods for esti-
mating race and gender disparity in the labour market). The conventional regression approach
includes a dummy variable to identify sex or race=ethnicity, implicitly assuming a common
amount (degree) of disparity for all minority group members. In contrast, the PB approach
produces estimates of the disparity for each minority group member by incorporating their
individual characteristics. This feature has made the PB approach useful in assessing possible
discrimination in salary or hiring practices as the individual estimates can determine what
each individual deserves. The statistical properties of the estimated disparity and associated
tests and con�dence intervals have been obtained by Gastwirth and Greenhouse [7] and Nayak
and Gastwirth [8] when the data comes from a simple random sample.
National surveys are excellent sources of data for producing population-based estimates of

disparities for various outcomes and various disadvantaged groups. For example, the 1998
National Health Interview Survey (NHIS) collects a variety of measures of health behaviour
and of socio-demographic variables, which have been used to assess disparity of minority
racial=ethnic groups in being screened for cancer [9]. However, these types of surveys have
complex sampling designs that involve cluster and strati�ed sampling and sample weighting,
which need to be accounted for in the analysis to obtain approximately unbiased parameter
estimates of the population with appropriate standard errors. This paper develops appropriate
methodology for use of multiple logistic or linear regression in the PB framework applied
to complex survey data. Special attention will be paid to using the sample weights in the
estimation of disparity and to account for the weighting, strati�cation, and clustering of the
sampling in the estimation of the standard errors of the disparity measure, in which we use a
design-based approach for estimating the disparity and its variance; other variance estimation
methods that rely more heavily on the correctness of the regression model are available (see
Reference [10, pp. 310–314, 323–326]).
Two popular methods for obtaining standard errors of estimators of complex survey data

where the estimators are non-linear di�erentiable functions are: (i) delete-one-group jackknife
[11, pp. 29–31]; and (ii) Taylor linearization [11, pp. 23–28] [12, 13]. The delete-one-group
jackknife method is a replication method that is based on repeated estimation of the parameter
after removing a subset of the data as determined by the clusters of the units used in the
sampling. The delete-one-group jackknife was applied by Rao et al. [9] for a PB analysis of
the 1998 NHIS that used logistic regression. The Taylor linearization method uses the delta
method to approximate a non-linear estimator by an estimator of a total. Standard analytical
formulas are then used to estimate the standard error of this total. The jackknife and Taylor
linearization methods are asymptotically consistent for complex sampling [14] and are shown
to yield similar results for the 1998 NHIS.
This paper is laid out as follows: Section 2 describes the PB method for estimating disparity

from weighted survey data. The description of the Taylor linearization and the delete-one-
group jackknife methods for estimating standard errors of disparity with data from surveys with
strati�ed multistage cluster samples is presented in Section 3. The PB approach is illustrated in
Section 4 for estimating racial=ethnic disparity in cancer screening among women in the 1998
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NHIS. The paper concludes with a Discussion, and Appendix A provides details for estimating
standard errors of disparity using the PB method that is based on logistic regression.

2. THE PETERS–BELSON APPROACH USING LOGISTIC REGRESSION

From a survey of n subjects, suppose we are interested in evaluating the disparity in a
binary outcome (Y ), e.g. having a recent screen for colorectal cancer, between two groups
of the subjects, R0 and R1, e.g. white (R0) and black (R1) women. R0 denotes the reference
group, advantaged=majority group, and R1 denotes the disadvantaged=minority group that is
being compared to R0. Each sampled person i in the survey has a 0–1 binary outcome yi,
a p× 1 covariate vector xi, a sample weight wi, which is the inverse of the probability of
including the person in the sample, and an indicator variable denoting group membership
that is given by �Rk i=1 if the person i is from group Rk , and �Rk i=0, otherwise, k=0, 1.
The (sample) weighted estimate of the crude proportion of individuals from group Rk with
outcome y=1 is

pRk =

∑n
j=1 wj�Rkjyj∑n
j=1 wj�Rkj

We �t a logistic regression to the observations from the reference group R0 with Pr(yi=1|xi; i∈
R0)= exp(x′

i�R0)=[1+exp(x
′
i�R0)], where the x

′
i is the transpose of xi and �R0 is the p× 1 vector

of regression coe�cients. The (sample) weighted pseudo-likelihood

n∏
i=1

[
exp(x′

i�R0)
1 + exp(x′

i�R0)

]�R0 iwiyi [ 1
1 + exp(x′

i�R0)

]�R0 iwi(1−yi)
(1)

is maximized to obtain �̂R0 , the (sample) design consistent estimate of �R0 [11, p. 101]. The
PB method assumes that the probability of a positive outcome for a person i in group R1
should follow the same logistic model as a person from the reference group R0, so each
person i in group R1 has a predicted outcome

p̂R0i=
exp(x′

i �̂R0)

1 + exp(x′
i �̂R0)

(2)

Thus, using the logistic model for group R0, the estimated expected proportion of individuals
with y=1 that are in group R1 is

p̂R0 ; R1 =

∑n
j=1 wj�R1jp̂R0j∑n
j=1 wj�R1j

The estimated di�erence between the crude proportions of individuals in R0 and R1 with y=1,
pR0 − pR1 , which is referred to as the ‘overall disparity’, can be partitioned as

pR0 − pR1 = (pR0 − p̂R0 ; R1) + (p̂R0 ; R1 − pR1) (3)
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The di�erence pR0 − p̂R0 ; R1 estimates that part of the overall disparity that can be explained by
the covariates and the di�erence p̂R0 ; R1−pR1 estimates the ‘unexplained disparity’, which is that
part of the overall disparity that cannot be explained by the covariates x in the logistic model.
The proportion of the overall disparity that is not explained by the covariates may be due
to discrimination or to omitted relevant covariates that are distributed di�erently between the
groups. The proportion or percent of disparity that is explained by the covariates is estimated
by DR0=D or 100×DR0=D, which is referred to as ‘per cent explained’, where D=pR0 − pR1
and DR0 =pR0 − p̂R0 ; R1 .

3. VARIANCE ESTIMATION FOR DISPARITY

3.1. Taylor linearization

The estimator of the PB measure of disparity of the ‘per cent explained’ is a complex non-
linear function of the survey data involving the predicted outcomes from the logistic regression
model and the sample weights. In addition, the estimate of disparity utilizes observations that
can be dependent because of cluster sampling of the survey. Because the estimator of the
‘per cent explained’ is a di�erentiable function of the data, the Taylor linearization method
for variance can be used to estimate its standard error. In general, this variance estimation
method involves �rst computing the Taylor deviate of the estimator for each observation
(zi), which is a measure of the in�uence or change in the value of the statistic when that
observation is deleted. Shah [12, 13] showed that the Taylor deviate is easily obtained by
di�erentiating a sample-weighted estimator with respect to its weights (for similar results
see also References [15–17]). An expression for the Taylor deviate zi of the estimator of
the ‘per cent explained’ based on logistic regression modelling is derived in Appendix A.
Next, because the sample-weighted sum

∑n
i=1 wizi is an asymptotically consistent linear ap-

proximation to the complex estimator [15], we can use standard survey sampling variance
formulas for estimating the variance of the weighted sum [18] to estimate the variance of the
complex estimator.
Standard software is available for estimating variances for totals such as

∑n
i=1 wizi under a

variety of complex sample designs (e.g. Reference [19]), including household surveys such
as the NHIS with multistage strati�ed cluster sampling. For surveys such as the NHIS, the
target population of individuals is partitioned into �rst stage clusters called primary sampling
units (PSUs), which are usually counties or cities. The PSUs are grouped into H strata that
are formed to be approximately homogeneous with respect to speci�c demographic character-
istics of the PSU populations, e.g. population size. At the �rst stage of sampling th PSUs are
randomly sampled from each stratum h=1; : : : ; H . At the second and further stages, strati�-
cation and cluster sampling can be used to sample individuals within the sample PSUs. Let
thi; i=1; : : : ; th be the number of individuals sampled from sampled PSU i in stratum h. For
these later stages of sampling in 1998 NHIS, clusters of households with high concentrations
of Hispanic and black populations are oversampled to increase the sample sizes of individ-
uals from these groups. (For further details about the sample design of the 1998 NHIS see
Reference [20].) Often the proportion of PSUs sampled at the �rst stage from each of the strata
is small so that the sample of the PSUs can be approximated as a strati�ed with-replacement
sample. In this case for a multistage strati�ed cluster sample the variance estimator of the
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weighted total of the Taylor deviates simpli�es and is given by

vâr

(
H∑
h=1

th∑
i=1

thi∑
j=1
whijzhij

)
=

H∑
h=1

th
th − 1

th∑
j=1
(zhj − �zh)2 (4)

where zhij and whij, respectively, are the Taylor deviate and sample weight for sampled indi-
vidual j from sampled PSU i from stratum h, zhi=

∑thi
j=1 whijzhij, and �zh=1=th

∑th
i=1 zhi.

3.2. Delete-one-group jackknife

When the estimator is a di�erentiable function of the data as is the case for the disparity
estimator, we can use a delete-one-group jackknife method for estimating the variance of
the estimator [11, pp. 29–31]. The jackknife estimator will depend on the sample design.
For the NHIS multistage strati�ed cluster sample design the jackknife leaves all observa-
tions from one PSU out at a time and recomputes the estimator each time. We �rst compute
the overall estimate of disparity �̂=DR0=D. Then we re-compute the disparity �̂(hi) leaving
out observations from PSU i in stratum h and increasing the sample weights of the re-
tained obervations in stratum h by the factor th=(th − 1). The jackknife variance estimator is
computed as:

H∑
h=1

th − 1
th

th∑
i=1
(�̂(hi) − �̂)2 (5)

4. AN APPLICATION

The data for this application is taken from the 1998 NHIS. The NHIS is a nationally rep-
resentative household interview survey of the civilian non-institutionalized population of the
U.S. The sample design of the 1998 NHIS is complex with strati�ed multistage probability
cluster sampling where at the �rst stage of sampling 2 PSUs in each of the 339 strata were
selected [20]. In this survey, the U.S. Department of Health and Human Services sponsored
a Health Prevention Supplement (HPS) to the core of the NHIS, which included questions
on the utilization of cancer screening. In each of the eligible 38 209 households selected for
interview, an adult respondent (¿18 years old) was randomly selected to complete the HPS.
Following Rao et al. [9], we estimated disparities in cancer screening between white, black,

and Hispanic women for: (i) colorectal cancer exam—fecal occult blood test during the past
2 years or endoscopy during the past 3 years; (ii) digital rectal exam during the past 2
years; (iii) Pap test during the past 3 years; and (iv) mammogram during the past 2 years.
Due to age-speci�c guidelines for screening use, and education, which is presumed to be
essentially completed by age 25, the analysis was restricted to subjects over the age of 49
years for colorectal cancer screening and digital rectal exam, over the age of 39 years for
mammography, and over the age of 24 for Pap test [21, 22]. For each type of screening
test logistic regression models were �t to the data for the majority group (usually white).
The covariates predictive of mammography use were age, age2, income (below the poverty
level [poor], 100–199 per cent of poverty level [near poor], and ¿200 per cent of poverty
level [middle=high]), education (less than high school graduate, high school graduate, and at
least some college), region of residence (Northeast, West, Midwest, and South), metropolitan
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Table I. Disparity in recent cancer screening∗ among women by race=ethnicity.

Standard error
of per cent Standard error

Sample Observed Predicted† Per cent explained of per cent explained
Type of screening Race size (per cent) (per cent) explained‡ (jackknife) (Taylor linearization)

Colorectal White 4016 31.1
(Age 50+) Black 691 24.7 26.5 72.4 26.1 26.0

Hispanic 526 19.2 26.5 39.1 10.3 10.3

Digital rectal exam White 3993 43.4
(Age 50+) Black 683 38.2 38.5 93.4 47.6 47.2

Hispanic 518 32.3 35.0 75.7 21.5 21.5

Mammography White 5888 66.7
(Age 40+) Black 1049 63.9 60.6 224.9 156.7 152.4

Hispanic 928 60.1 56.6 154.3 47.7 47.5

Pap test Black 2354 80.1
(Age 25+) White 11 077 77.0 77.6 79.2§ 26.6 26.5

Hispanic 2478 73.8 80.0 1.8§ 8.8 8.8

∗For colorectal screening, ‘recent’ is if the respondent reported fecal occult blood test for screening during the past
2 years or endoscopy for screening during the past 3 years; for digital rectal exam and mammography, ‘recent’ is
de�ned as during the past 2 years preceding the interview, and for Pap test, ‘recent’ de�ned as during the 3 years
preceding the interview.

†Predicted using the logistic regression model �t among the majority group (white) except for Pap test where the
majority group was black.

‡((Observed (white)− predicted (black=Hispanic))=(observed (white)− observed (black=Hispanic)))∗100.
§((Observed (black)− predicted (white=Hispanic))=(observed (black)− observed (white=Hispanic)))∗100.

statistical area (in MSA or not), health insurance coverage (yes or no), and usual source of
care (yes or no). As education, MSA and health insurance coverage were not predictive of
colorectal screening they were not included. MSA and region of residence were not predictive
of digital rectal exam and were excluded from that model. Only age and usual source of care
were predictive of Pap test.
The group with the highest rate of screening (‘best’ group) was used as the reference

group (R0). This meant that white women were the reference group for all cancer screening
modalities except for Pap test screening where black women were the reference group with
the highest screening rate.
All estimates were weighted using the NHIS sample weights. We computed variances for

the estimates using the Taylor linearization approach (4) and compared them to the strati�ed
cluster sample version of the delete-one-group jackknife variance estimator (5). The procedure
IML in the statistical software package of SAS V8.2 [23] was used to compute the Taylor
deviates, and SUDAAN V8.0 [19] was used to compute the variances of the weighted sum
of the deviates.
The racial=ethnicity disparities in cancer screening rates for women are displayed in Table I.

The covariates that explain black–white di�erences do not explain as much of the Hispanic–
white di�erences and Hispanic–black di�erence for Pap tests. The standard errors obtained
using the jackknife approach, as well as, the Taylor linearization approach are presented in
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the last two columns of Table I. The standard errors obtained by both these methods closely
agree. Even though the sample sizes in the NHIS were moderately large, we found that the
‘per cent explained’ had relatively large standard errors, resulting in fairly wide con�dence
intervals. This is because the estimated crude di�erences in screening rates between any two
groups appears in the denominator of the ‘per cent explained’, and these di�erences can be
small resulting in high variability of the ‘per cent explained’.

5. DISCUSSION

In this paper we describe the PB method for estimating disparity using logistic regression for
the analysis of complex survey data. We describe the estimation of standard errors using both
the Taylor linearization approximation of the estimated ‘per cent explained’ and the delete-
one-group jackknife method. We illustrate the PB method for survey with an application to
the NHIS in evaluating disparities in cancer screening rates by ethnicity among women.
Large national surveys (e.g. 1998 NHIS) are excellent data sources for studying di�er-

ences in health practices and behaviour between the major and minority groups because they
often over-sample African-Americans and Hispanics. Thus, the sample sizes are adequate
to accurately estimate between-group di�erences in the predictors of outcomes such as can-
cer screening for African-Americans, Hispanics and whites. In addition, the sample weighted
estimation provides U.S.-based population estimates of disparity.
Originally Peters [24] and Belson [25] developed their measure of disparity for a multi-

ple linear regression model �tted to observations on a dependent variable y and covariates
x from the reference group R0. For survey data, the estimated linear regression coe�cients,
�̂R0 , can be obtained using weighted least squares with the weights being the sample weights
[11, pp. 92–93]. The disparity measure, DR0=D× 100 per cent, is estimated by letting the
p̂R0j= x

′
j �̂R0 for members j from the minority group R0. The variance estimator for this dis-

parity measure can be obtained for a multistage strati�ed cluster sample by using the general
expression for the variance estimator given in equation (4) with the Taylor deviates for the
logistic regression case modi�ed for multiple linear regression by letting @p̂R0j=@�̂R0 = xj and

@�̂R0=@wi=[
∑n

j=1 wj�R0jxjx
′
j ]

−1�R0ixi(yi − p̂R0i) in equation (A2) in Appendix A. The expres-
sion for @�̂R0=@wi was obtained from di�erentiation of the weighted least squares estimating
equations.
It has been noted that when the covariate distributions between the groups do not overlap

well the PB method can yield a biased estimate of the disparity because the regression model
that has been �tted to the majority group may not be appropriate for the region of the covariate
space covered only by the distribution of the minority group [26]. Non-parametric approaches
have been proposed that may yield a less biased estimate when there is little overlap in the
covariate distributions [26, 27]. In our example, the covariates were categorical, except for
age, and there was reasonable overlap between the covariate distributions.
The NHIS sample weights are random variables because they include adjustments for post-

strati�cation and non-response to the inverse of the probabilities of selection. However, as
pointed out by a reviewer, our method of variance estimation does not account for variability
in these weights, as they are treated as �xed quantities. Canty and Davison [28] empirically
show that ignoring postrati�cation can result in under-estimation of this variance. Korn and
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Graubard [11, pp. 35–38] however, argue that poststrati�cation often tends to reduce vari-
ability. In practice many national surveys like the NHIS do not provide su�cient information
about the weighting to enable analysts to account for these adjustments in the variance estima-
tion process. There are national surveys (e.g. third National Health and Nutrition Examination
Survey, see Reference [11, p. 35]) that provide replicate weights that can be used to estimate
variances, e.g. from balanced-half sample repeated replication, where the variability from the
adjustments to the sample weights are taken into account in the variance estimation [29].
The approach that we used to derive the Taylor linearization is quite general and can

be applied to other complex statistics such as estimating the variances for the regression
coe�cients from Cox proportional hazard regression of a complex survey [12, 13].
In the NHIS example, we found that the standard errors obtained using the Taylor lin-

earization method were close to those obtained using the jackknife method. Although the
jackknife method is easy to apply, it is very computer intensive, especially for a survey with
a large number of PSUs. The Taylor linearization method is less computer intensive and can
be easily implemented by computing a Taylor deviate for each observation and then use a
software package (e.g. SUDAAN) to estimate the variances of the sample weighted totals of
those deviates.

APPENDIX A: DERIVATION OF THE TAYLOR DEVIATE FOR THE
PETERS–BELSON MEASURE OF DISPARITY UNDER LOGISTIC REGRESSION

Using the approach of Shah [12, 13], the Taylor deviates (zi) for the estimated disparity
DR0=D are:

zi=
@DR0=D
@wi

=
@(1−DR1=D)

@wi
=

−1
D
@DR1
@wi

+
DR1
D2

@D
@wi

(A1)

where DR1 = p̂R0 ; R1 − pR1 . We proceed to obtain an expression for the zi by computing the
expressions for @DR1=@wi, @D=@wi and substituting them into (A1).

Since DR1 =

∑n
j=1 wj�R1jp̂R0j −∑n

j=1 wj�R1jyj∑n
j=1 wj�R1j

@DR1
@wi

=
−1∑n

j=1 wj�R1j

⎡
⎣�R1i(yi − p̂R0i)−

(
n∑
j=1
wj�R1j

@p̂R0j
@�̂R0

)′
@�̂R0
@wi

⎤
⎦ (A2)

− �R1j(∑n
j=1 wj�R1j

)2 n∑
j=1
wj�R1j(yj − p̂R0j)

where chain rule is used to obtain the second expression in the square brackets. From equation
(2) in the main text, we obtain the p× 1 vector @p̂R0j=@�̂R0 = p̂R0j(1−p̂R0j)xj. An expression for
@�̂R0=@wi is obtained from di�erentiating the weighted pseudo-likelihood estimating equations
for �R0 from the logistic regression model [11, p. 101], with respect to the sample weights:
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The weighted pseudo-likelihood estimating equations for �R0 evaluated at �̂R0 are

n∑
j=1
wj�R0jxj(yj − p̂R0j)=0

Di�erentiating these estimating equations with respect to wi

�R0ixi(yi − p̂R0i)−
n∑
j=1
wj�R0jxj

@p̂R0j
@�̂R0

@�̂R0
@wi

=0

and

�R0ixi(yi − p̂R0i)−
n∑
j=1
wj�R0jxjx

′
j p̂R0j(1− p̂R0j)

@�̂R0
@wi

=0

because @p̂R0j=@�̂R0 = p̂R0j(1− p̂R0j)xj. Solving for @�̂R0=@wi produces the desired result.

@�̂R0
@wi

=

[
n∑
j=1
wj�R0jxjx

′
j p̂R0j(1− p̂R0j)

]−1
�R0ixi(yi − p̂R0i)

Recalling that

D=pR0 − pR1 =
∑n

j=1 wj�R0jyj∑n
j=1 wj�R0j

−
∑n

j=1 wj�R1jyj∑n
j=1 wj�R1j

then

@D
@wi

=
1∑n

j=1 wj�R0j
[�R0i(yi − pR0)]−

1∑n
j=1 wj�R1j

[�R1i(yi − pR1)] (A3)

We obtain the expression for the Taylor deviates zi by substituting (A2) and (A3) into (A1).
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